C. Homotopy groups of spheres
we will use spectral sequences to compute hamotopy groups of spheres, first we show
Th ${ }^{1} 9$ 9:

$$
\pi_{4}\left(s^{3}\right) \cong \mathbb{Z} / 2
$$

Remark: recall $\pi_{3}\left(s^{2}\right) \cong \mathbb{Z}$
so $\pi_{n+1}\left(s^{n}\right)$ not fixed
it will take awhile to prove $T^{m} 9$, we start with a def n If X is a CW complex then, then for each n Ia sequence of fibrations

$$
\begin{array}{rl}
K\left(\pi_{q}(x), q\right) \rightarrow \zeta_{q} & q=1, \ldots, n \\
\downarrow
\end{array}
$$

and maps $X \xrightarrow{f_{q}} Y_{q} \quad Y_{q-1}$
st. 1) $\pi_{k}(x) \xrightarrow{\left(f_{a}\right)_{k}} \pi_{k}\left(\zeta_{q}\right)$ is isomorphism $\forall k \leq g$
2) $\pi_{k}\left(Y_{q}\right)=0 \quad \forall k>q$
3) $\quad K\left(a_{n}(x), n\right) \rightarrow Y_{n}$

commutes
this is called a Postrikov tower for X and the Y_{q} are Postnikov approximations of X
lemma 10:
for each n, every (W-complex has a Postnikor tower

Proof: given a CW-complex X, by $T T^{m} I .27$ we can attach cells of dimension $\geq n+2$ to kill the homotopy groups $\pi_{k}(x), k>n$, without changing π_{k} for $k \leq n$ call resulting space Y_{n}
build Y_{n-1} by attaching cells of dim $\geq n+1$ to kill
the homotopy groups $\pi_{h}, k>n-1$
contriving we get $X \subset Y_{n} \subset Y_{n-1} \subset \ldots \subset Y$, and the inclusion $f_{q}: X \rightarrow \zeta_{q}$ induces an 13 omorphism on $\pi_{k}, k \leq q$
on page 22 of section II we showed how to turn an viclusion into a fibration (upto homotopy) so we get fibrations

$$
Y_{q} \longrightarrow \zeta_{q-1}
$$

now the long exact sequence of a fibration (Cor II.7) gives

$$
\pi_{k+1}\left(\varphi_{q}\right) \rightarrow \pi_{k+1}\left(\varphi_{q-1}\right) \rightarrow \pi_{k}(F) \rightarrow \pi_{k}\left(\varphi_{q}\right) \rightarrow \pi_{k}\left(\varphi_{q-1}\right)
$$

if $k \neq q$ or $q-1$, the outmost maps are isomorphisms so $\pi_{k}(F)=0$
for $k=9$

$$
\begin{aligned}
& 0 \rightarrow \pi_{q}(F) \rightarrow \pi_{q}\left(Y_{q}\right) \xrightarrow{P_{*}} \pi_{q}\left(Y_{q-1}\right) \\
& \pi_{q}(F)=\operatorname{ker} P_{*}=\pi_{q}(x)
\end{aligned}
$$

by construction
for $k=9-1$

$$
\pi_{q}\left(\zeta_{q-1}\right) \rightarrow \pi_{q-1}(F) \rightarrow \pi_{q-1}\left(\zeta_{q}\right) \xrightarrow{\geqq} \pi_{q-1}\left(\zeta_{q-1}\right)
$$

so F is a $K\left(\pi_{q}(x), q\right)$
lemmall:

$$
\pi_{q}\left(s^{3}\right) \cong H_{q+1}\left(\varphi_{q-1}\right) \quad \text { for } q>3
$$

where Y_{q-1} is the $(q-1)^{\underline{s t}}$ term in a Postnikov tower for S^{3}

Proof: the Postnikov tower for 5^{3} has

$$
\begin{aligned}
& Y_{1} \simeq Y_{2} \simeq p t \quad \text { (since only nontrivial } \pi_{k} \text { is } \pi_{0} \text {) } \\
& Y_{3}=K\left(\pi_{3}\left(s^{3}\right), 3\right)=K(\mathbb{Z}, 3) \\
& Y_{q}=s^{3} \cup(q+2) \text {-cells } \cup(q+3) \text {-cells } \cup \ldots
\end{aligned}
$$

note: $H_{q}\left(Y_{q}\right)=H_{q+1}\left(Y_{q}\right)=0$ for $q>3$
since Y_{q} has no q or $q+1$ cells!
Consider the fibration $K\left(\pi_{q}\left(s^{3}\right), q\right) \rightarrow Y_{q}$

$$
\stackrel{\downarrow}{Y_{q-1}}
$$

we compute the homology of Y_{q} using the Leray-Serre spectral sequence for this we need to know

$$
H_{t}\left(K\left(\pi_{q}\left(s^{3}\right), q\right)\right)= \begin{cases}\mathbb{Z} & t=0 \\ 0 & t=1, \ldots, q-1 \\ \pi_{q}\left(s^{3}\right) & t=q \\ ? & t>q\end{cases}
$$

the E^{2} - tam of spectral sequence is

$$
E_{s, t}^{2}=H_{s}\left(Y_{q-1} ; H_{t}\left(K\left(\pi_{q}\left(s^{3}\right)\right), q\right)\right)
$$

as above note

$$
H_{s}\left(Y_{q-1}\right)= \begin{cases}\underset{z}{z} & s=0 \\ 0 & s=1 \\ 0 & s=2 \\ \underset{z}{z} & s=3 \\ 0 & s=4 \\ \vdots & =4 \\ 0 & s=q \\ ? & \end{cases}
$$

since $Y_{q-1}=s^{3} \cup k$-cells with $k z q+1$
$E_{s, t}^{2}$

$$
t=q \quad \pi_{q}\left(s^{3}\right) \cong H_{0}\left(Y_{q-1} ; \pi_{q}\left(s^{3}\right)\right)
$$

We know $E_{s, t}^{\infty}$ is
$S+f=q+1$
Ste ra 9

note: all $d^{k}: E_{k, q-h+1}^{k} \longrightarrow E_{0, q}^{k}$
are zero except when $k=q+1$
\therefore since $E_{0,4}^{\infty}=0$ must have d^{k} onto but if ken ${ }^{k} \neq 0$ then $E_{q t 1,0}^{\infty}=k e r d^{k}$ but must be 0
$\therefore d^{k}$ an isomorphism

$$
\begin{array}{cc}
E_{q+1,0}^{q+1} & \longrightarrow E_{0, q}^{q+1} \\
s+1 \\
H_{q+1}\left(y_{q-1}\right) & s_{q}\left(s^{3}\right)
\end{array}
$$

Cor $12:$

$$
\pi_{4}\left(S^{3}\right) \cong H_{5}(K(\nVdash, 3))
$$

Proof: by last proof we have

$$
\pi_{4}\left(s^{3}\right)=H_{5}\left(Y_{3}\right)=H_{5}\left(K\left(\pi_{3}\left(s^{3}\right), 3\right)\right)=H_{5}(K(\mathbb{z}, 3))
$$

Th M 13:

$$
H_{5}(K(\mathbb{Z}, 3)) \cong \mathbb{Z} / 2
$$

Proof of Th - 9:
Cor 12 and $T h \stackrel{m}{1} 13 \Rightarrow \pi_{\varphi}\left(s^{3}\right) \cong \mathbb{Z} / 2$
Proof of $T h^{m} 13$:
we start by computing the cohomology of $K(\mathbb{X}, 3)$ recall from Cor II. 9 for any X

$$
\pi_{n-1}(\Omega x) \cong \pi_{n}(x)
$$

so $\Omega K(\mathbb{Z}, 3) \simeq K(\mathbb{Z}, 2)=\mathbb{C} p^{\infty}$
in deed $S^{\prime} \rightarrow s^{\infty}=*$ \downarrow is a \mathbb{C}^{∞} fibration and $S^{\infty} \approx p^{t}$ so

$$
\begin{gathered}
\pi_{n}\left(s^{\infty}\right) \rightarrow \pi_{n}\left(\mathbb{C}^{\infty}\right) \stackrel{\sim}{\rightrightarrows} \underset{0}{\rightrightarrows} \pi_{n-1}\left(s^{\prime}\right) \rightarrow \pi_{1-1}\left(s^{\infty}\right) \\
0
\end{gathered}
$$

we have a fibration
(by lemma II.5)

$$
\begin{aligned}
& K(\mathbb{z}, 2) \simeq \Omega K(z, 3) \rightarrow P K(z, 3) \\
& \text { and } P K(z, 3) \simeq \text { pt }
\end{aligned}
$$

the cohomology Leray-Serre spectral sequence has

$$
E_{2}^{s, t}=H^{s}\left(K(\mathbb{Z}, 3), H^{t}\left(\mathbb{C} P^{\infty}\right)\right)
$$

recall $H^{*} \mathbb{C p}^{\infty} \cong \mathbb{Z}[a]$ degree $a=2$
and $H_{1}(K(\mathbb{Z}, 3))=H_{2}(K(\mathbb{Z}, 3))=0$ since $\pi_{1}=\pi_{2}=0$ and Hwewiciz
$\therefore H^{\prime}(K(\mathbb{Z}, 3))=H^{2}(K(\mathbb{Z}, 3))=0$ by Universal Coeffic. Th ${ }^{m}$
so $E_{2}^{s, t}$ is

$$
\begin{array}{cccc}
\vdots & \vdots & \vdots & \\
\mathbb{Z}_{a^{3}} & 0 & 0 & \\
0 & 0 & 0 & \\
\mathbb{Z} a^{2} & 0 & 0 & \vdots \\
0 & 0 & 0 & H^{3}(K(\mathbb{Z}, 3)) \otimes H^{2}\left(a^{\infty}\right) \\
\mathbb{Z} a & 0 & 0 & 0 \\
0 & 0 & 0 & H^{3}(k(\mathbb{Z}, 3)) \\
\mathbb{Z} & 0 & 0 &
\end{array}
$$

for this part of $E_{2}^{s_{0} t}, d_{2}=0$
so $E_{3}^{s, t}=E_{2}^{s, t}$
we know $E_{\infty}^{s, t}=0$ for $(s, t) \neq(0,0)$ since $P K(z, 3) \simeq *$

is an isomorphism
So if we define $s=d_{3}$ a then s generates $H^{3}(K(\mathbb{Z}, 3))$

$$
\text { so } H^{3}(K(\mathbb{Z}, 3)) \cong \mathbb{Z}_{\langle s\rangle}
$$

and $s \cdot a$ is a generator of $H^{3}(K(Z, 3)) \otimes H^{2}\left(\mathbb{E} P^{\infty}\right)$

$$
\begin{array}{rlrl}
d_{3} a^{2} & =d a \cdot a+a \cdot d a & E_{3}^{3,2} \\
& =s \cdot a+a \cdot s=2 a \cdot s
\end{array}
$$

so in $E_{3}^{\text {sit }}$ we see

note: d_{3}, d_{4} mapprig to $E_{k}^{4,0}$ come from 0 and d_{k} for $k>4$ also 0 map so $i f E_{2}^{4,0} \neq 0$ then $E_{\infty}^{4,0} \neq 0$ $\otimes \operatorname{PK}(z, 3)$ contractible
so $H^{4}(K(Z, 3))=E_{2}^{4,0}=0$
similark d_{3}, d_{4} into $E_{k}^{5,0}$ come from 0 but $d_{5}: E_{5}^{0,4} \rightarrow E_{5}^{5,0}$

$$
E_{2}^{0,4}=E_{3}^{0,4}=\mathbb{Z} \text { gen by } a^{2}
$$

but $d_{3} a^{2} \neq 0$ so $E_{k}^{0,4}=0 \quad k>3$
$\therefore d_{5}$ into $E_{5}^{5.0}$ also 0 and $d_{k}=0$ for $k>5$ too so as above $H^{5}(K(\mathbb{Z}, 3))=0$
now $E_{3}^{\text {sit }}$ looks like

so

$$
\mathbb{Z}_{\left\langle a^{2}\right\rangle}^{\mathbb{Z}^{2}}
$$

If er d_{3} not $\langle 2 a-5\rangle$ then $F_{4}^{3,2}=\mathbb{Z} / 2$ and so is $E_{k}^{3,2} \forall k$ (no other d_{k} can kill it but $E_{\infty}^{3,2}=0$)
moreoren d_{3} must be onto $E_{3}^{6,0}$ or if would live to E_{∞}, so

$$
H^{6}(K(\mathbb{Z}, 3))=E_{3}^{6,0}=\mathbb{Z} / 2
$$

recall we want to compute $H_{5}(K(\mathbb{Z}, 3))$ the Universal Coefficients Theorem gives

$$
O=H^{5}(K(z, 3)) \cong \text { free } H_{5}(K(z, 3)) \oplus \text { tor } H_{4}(K(z, 3))
$$

$$
\begin{gathered}
\mathbb{Z} / 2=H^{6}(K(\mathbb{Z}, 3)) \cong \text { free } H_{6}(K(\mathbb{Z}, 3)) \oplus \text { for } H_{5}(K(\mathbb{Z}, 3)) \\
\quad \text { from above } \\
\therefore H_{5}(K(\mathbb{Z}, 3)) \cong \mathbb{Z} / 2 \text { 囲 }
\end{gathered}
$$

we are done with the proof but le f's compute a bit more of $H^{q}(K(\mathbb{Z}, 3))$
we know $E_{3}^{\text {st looks like }}$

$\left\langle a^{3}\right\rangle$	0	0	$\left\langle a^{3} s\right\rangle$	\vdots	\vdots	$\mathbb{Z} / 2$
0	0	0	0	0	0	0
$\left\langle a^{2}\right\rangle$	0	0	$\left\langle a^{2} s\right\rangle$	0	0	$\mathbb{Z} / 2$
0	0	0	0	0	0	0
$\langle a\rangle$	0	0	$\langle a \cdot s\rangle$	0	0	$\mathbb{Z} / 2$
0	0	0	0	0	0	0
$\langle 1\rangle$	0	0	$\langle s\rangle$	0	0	$\mathbb{Z} / 2$

$E_{3}^{7,0}$ must be zeno since domains of all d_{k} mopping to it are shows above so all d_{h} are 0 but $E_{\infty}^{7,0}=0$

$$
\therefore H^{7}(K(\mathbb{Z}, 3))=E_{3}^{7,0}=0
$$

so we now know $E_{3}^{3, t}$ looks like

$$
\begin{array}{cccccccc}
0 & 0 & \left\langle a^{3}\right\rangle & 0 & 0 & \left\langle a^{3} s\right\rangle & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\left\langle a^{2}\right\rangle & 0 & 0 & \left\langle a^{2} s\right\rangle & 0 & 0 & z / 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\langle a\rangle & 0 & 0 & \langle a \cdot s\rangle & 0 & 0 & \mathbb{Z} / 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\langle 1\rangle & 0 & 0 & \langle s\rangle & 0 & 0 & \mathbb{Z} / 2 & 0
\end{array} H^{8}
$$

note: $\quad d_{3}\left(a^{3}\right)=3 a^{2}$.s

$$
\begin{aligned}
& d_{3}\left(a^{2} s\right)=2 a \cdot s=0 \text { in } \mathbb{Z} / 2 \\
& \therefore E_{4}^{3,4}=\mathbb{Z} / 3
\end{aligned}
$$

the only way $E_{4}^{3.4}$ does not "live to ∞ " is if if is onto some $E_{h}^{\text {sot }}$ only possibility is $E_{5}^{3.4} \rightarrow E_{5}^{8,0}$ also $E_{5}^{8.0}=E_{3}^{8,0}$ (since all mops $d_{k} k=3,4$ in and oof of E_{k}^{8} are 0)
$\therefore d_{5}: E_{5}^{3.4} \rightarrow E_{5}^{8.0}$ is an isomorphism
$\begin{array}{ll}\text { ti } & 3\end{array} \quad H^{8}(K(\mathbb{z}, 3))$
so we have computed

q	0	1	2	3	4	5	6	7	8
$H^{q}(K(\mathbb{Z}, 3))$	\mathbb{Z}	0	0	\mathbb{Z}	0	0	$\mathbb{Z} / 2$	0	$\mathbb{Z} / 3$

Th ${ }^{\text {M }} 14$:

$$
\pi_{5}\left(S^{3}\right) \cong \mathbb{Z} / 2
$$

If we try to compute as wedid for $\pi_{4}\left(s^{3}\right)$ we will run into problems in the spectral sequence because we cannot de taurine some differentials, so we need a new idea!
given a CW complex we can construct a sequence of fibrations

such that 1) X_{n} is n-connected

$$
\text { ie. } \pi_{k}\left(x_{n}\right)=0 \quad \forall k \leq n
$$

2) $\pi_{k}\left(X_{n}\right) \cong \pi_{k}(X) \quad \forall k>n$
3) $X_{n} \rightarrow X_{n-1}$ has fiber $K\left(\pi_{n}(x), n-1\right)$
this is called a Whitehead tower of X
note: it generalizes the universal cover and is kind of "dual" to Postnikov towers
lemma 15:
Every CW-complex has a Whitehead tower

Proof: let $X_{0}=X$
to construct X_{n} from X_{n-1} attach cells of dimension $\geq n+2$ to kill π_{k} for $k \geq n+1$
this gives $K\left(\pi_{n}(x), n\right)=X_{n-1} \cup e^{n+2} \ldots$
let $\Lambda_{n-1}=$ paths in $K\left(\pi_{n}(x), n\right)$ from a fixed base point $x_{0} \in K\left(\pi_{n}(x), n\right)$ to X_{n-1}

let $p: \Lambda_{n-1} \rightarrow X_{n-1}$ be evaluate at end point like in the proof of lemma II. 5 that $\Omega(x) \rightarrow P(x) \rightarrow x$ is a fibration one can show $p: \Lambda_{n-1} \rightarrow X_{n-1}$ is a fibration recall Ω shifts π^{π} by one the fiber is $\Omega\left(K\left(\pi_{n}(x), n\right)\right)=K\left(\pi_{n}(x), n-1\right)$
(just take $x_{0} \in X_{n-1}$)
consider the exact sequence of fibration

$$
\pi_{k}\left(K\left(\pi_{n}(x), n-1\right)\right) \rightarrow \pi_{k}\left(\Lambda_{n-1}\right) \rightarrow \pi_{k}\left(x_{n-1}\right) \rightarrow \pi_{k-1}\left(K\left(\pi_{1}(x), n-1\right)\right)
$$

$$
\text { if } k \geq n+1 \text {, then } \pi_{k}\left(\Lambda_{n-1}\right) \cong \pi_{k}\left(x_{n-1}\right) \cong \pi_{k}(x)
$$

if $k \leq n-2$, then $\pi_{k}\left(\Lambda_{n-1}\right) \cong \pi_{k}\left(x_{n-1}\right) \stackrel{』}{=} 0$
we are left with
if ∂ is an isomorphism then $\pi_{n}\left(\Lambda_{n-1}\right)=\pi_{n-1}\left(\Lambda_{n-1}\right)=0$
so if we set $X_{n}=\Lambda_{n-1}$ then this wis the next step in whitehead tower for this note

$$
x_{n-1} \stackrel{i}{\longrightarrow} K\left(\pi_{1}(x), n\right)=X_{n-1} \cup e^{n+2} \cup \ldots
$$

So i induces an isomorphism on π_{n}

$$
\pi_{n}\left(x_{n-1}\right) \xrightarrow[\cong]{2_{x}} \pi_{n}\left(K\left(\pi_{n}(x), n\right)\right) \xrightarrow[\cong]{\cong} \pi_{1-1}\left(\Omega K\left(\pi_{n}, n\right)\right)
$$

exenuse: exercise show this composition is exactly 2
Hint: proof $\pi_{n}(x) \cong \pi_{n-1}(\Omega x)$ uses 2 map in L.E.S. of fibration

Proof of T_{h} 른:
Whitehead to wen of s^{3} is

$$
\pi_{5}\left(S^{3}\right) \cong \pi_{5}\left(x_{4}\right) \cong H_{5}\left(x_{4}\right)
$$

we first need to compute the homology of X_{3} we have a fibration

$$
\begin{aligned}
& X_{3} \leftarrow K(\mathbb{E}, 2) \simeq \mathbb{C} \rho^{\infty} \\
& L^{3} \\
& s^{3}
\end{aligned}
$$

recall $H^{*}\left(\mathbb{C} p^{\infty}\right) \cong \mathbb{Z}[a]$ and

$$
H^{*}\left(S^{3}\right) \cong \begin{cases}\mathbb{E} & *=0,3 \\ 0 & \text { otherwise }\end{cases}
$$

so Leray-Serre sequence gives

$$
H_{2}^{s, t}=H^{s}\left(s^{3} ; H^{t}(\mathbb{C} \rho \infty)\right)
$$

so we see

$$
\begin{array}{cccc}
\vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 \\
\left\langle a^{2}\right\rangle & 0 & 0 & \left\langle a^{2} u\right\rangle \\
0 & 0 & 0 & 0 \\
\langle a\rangle & 0 & 0 & \langle a u\rangle \\
0 & 0 & 0 & 0
\end{array}
$$

$$
\langle 1\rangle 00\langle u\rangle
$$

$$
d_{2}=0 \text { so } E_{2}=E_{3}
$$

recall $H^{k}\left(x_{3}\right)=0$ for $k=1,2,3$ (by Hurewičz)
so E_{∞} looks like

\therefore We must have $d_{3} a=u$
thus $d_{3} a^{n}=n a^{n-1} u$ and we see $E_{4}=E_{\infty}$ is

swine there is only one nontrivial term on each diagonal $\underset{s t t=q}{\bigoplus} E_{\infty}^{s, t}=H_{\text {le mm a }}^{q}\left(x_{3}\right)$
thus we have

now for the homology of X_{4}
we apply the homology Leray-Serre sequence to

$$
\begin{aligned}
K\left(\pi_{4}\left(s^{3}\right), 3\right) \rightarrow & x_{4} \\
& \stackrel{\downarrow}{x_{3}}
\end{aligned}
$$

the E^{2} term is $E_{s, t}^{2}=H_{s}\left(X_{3} ; H_{t}\left(K\left(\pi_{4}\left(s^{3}\right), 3\right)\right)\right.$
we computed $H_{5}\left(X_{3}\right)$ above and

$$
\begin{aligned}
& H_{t}\left(K\left(\pi_{\varphi}\left(s^{3}\right), 3\right)\right) \cong\left\{\begin{array}{ll}
\mathbb{Z} & t=0 \\
0 & t=1,2, \\
\pi_{4}\left(s^{3}\right) & t=3
\end{array} \quad\right. \text { by Hurewiciz } \\
& E^{2} \\
& \begin{array}{ccccccc}
\pi_{4}\left(s^{3}\right) & 0 & 0 & 0 & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\mathbb{Z} & 0 & 0 & 0 & Z / 2 & 0 & \# / 3
\end{array}
\end{aligned}
$$

we know $H_{k}\left(X_{4}\right)=0$ for $k=1,2,3,4$ So E^{∞} must be

so $E_{4,0}^{2}=\mathbb{Z} / 2$ must die at some point only possibility is

$$
\begin{aligned}
& d^{4}: E_{q_{0}, 0}^{4} \rightarrow \\
& s_{4} \\
& z_{2} E_{0,3}^{4} \\
& \\
& \pi_{4} \pi_{4}\left(s^{3}\right)
\end{aligned}
$$

this must be an isomorphism or something lives to E^{∞}
note: this is another proof $\pi_{4}\left(s^{3}\right) \cong \mathbb{k} / 2$!
lemma 16:

$$
\begin{aligned}
& H_{4}(K(\mathbb{Z} / 2,3))=0 \\
& H_{5}(K(\mathbb{Z}, 3))=Z / 2
\end{aligned}
$$

so now $E_{s, t}^{2}$ looks like

$$
E^{2}=E^{3}
$$

and d^{4} must be an isomorphism
so $E_{s, f}^{5}$ is

	$1 / 2$	0	0	0		0
0	0	0	0	0	0	0
0	0	0	0		0	
0	0	0	0	0	0	0
0	0	0	0	0	0	0
\mathbb{Z}	0	0	0	0	0	$\mathbb{Z} / 3$

the only possible nonzero differential that hits $E_{0,5}^{k}$ is

$$
\begin{array}{rc}
d_{6}: E_{6,0}^{6}
\end{array} \rightarrow \underset{0,5}{E_{0,5}^{6}}
$$

but there is no nontrivial map $\mathbb{Z} / 3$ to $\mathbb{Z} / 2$

$$
\therefore E_{0,5}^{\infty} \cong \mathbb{Z} / 2 \text { and }
$$

E^{∞}

\therefore lemma l says $H_{5}\left(x_{4}\right) \cong \mathbb{Z} / 2$ and we saw earlien $\pi_{5}\left(S_{3}\right) \cong H_{5}\left(X_{4}\right)$

We are left to prove lemma but first we need to compute homology of $K(Z / 2,1)$ and $K(Z / 2,2)$
 cover we know $\pi_{h}(\mathbb{R P \infty})=0$ for $k>1$ by $T^{m} I .18$ so $\mathbb{R} P^{\infty}=K(\mathbb{Z} / 2,1)$
exercise: show $H^{*}(\mathbb{R} \rho \infty)=\mathbb{Z}[\alpha] /\langle z \alpha\rangle \quad \operatorname{deg} \alpha=2$

$$
= \begin{cases}\mathbb{Z} & *=0 \\ \mathbb{Z} / 2 & * \text { even } \\ 0 & * \text { odd }\end{cases}
$$

Hint: cant use $s^{0} \rightarrow s^{\substack{\infty}} \underset{\mathbb{R} \rho^{\infty}}{\substack{\infty\\}}$ since $\mathbb{R} P^{\infty}$ not simply con.
but

use this

$$
H^{*}\left(\mathbb{C}^{P \infty}\right) \cong \mathbb{Z}[\alpha] \quad \operatorname{deg} \alpha=2
$$ from earlier exercise

also know $H_{1}(\mathbb{R} \rho \infty)=\mathbb{Z} / 2$
$\therefore H^{2}(\mathbb{R} P \infty) \cong \mathbb{Z} / 2 \underbrace{\oplus \text { free part by Universal Coff } T^{m}-\underline{m}}_{\text {you will see this is } 0}$
lemma 17:

q	0	1	2	3	4	5	6
$H^{9}(K(\mathbb{Z} / 2,2))$	\mathbb{Z}	0	0	$\mathbb{Z} / 2$	0	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$
$H_{q}(K(\mathbb{Z} / 2,2))$	\mathbb{Z}	0	$\mathbb{Z} / 2$	0	$\mathbb{Z} / 2$	$\mathbb{Z} / 2$	0

Proof: we use the path space fibration (lemma II. 5)

so cohomology Leray-Serre gives

$$
\begin{array}{llll}
E_{2}^{s, t} & \mathbb{H}_{4}\left\langle\alpha^{3}\right\rangle & 0 & 0 \\
& Z_{42}\left\langle\alpha^{2}\right\rangle & 0 & 0 \\
& 0 & 0 & 0 \\
& \mathbb{Z} /\langle\alpha\rangle & 0 & 0 \\
0 & 0 & 0 \\
& \mathbb{Z} & 0 & 0
\end{array}
$$

in this part $d_{2}=0$ so $E_{3}=E_{2}$
we know $E_{\infty}^{s, t}= \begin{cases}\mathbb{Z} & (s, t)=(0,0) \\ 0 & \text { otherwise }\end{cases}$
so $d_{3}: E_{3}^{0,2} \rightarrow E_{3}^{3,0}$ must be an isomorphism

$$
\therefore H^{3}(K(\mathbb{Z}, 2))=E_{3}^{3,0} \cong E_{3}^{0,2} \cong \mathbb{Z} / 2
$$

and is generated by $\beta=d_{3} \alpha$
So now $E_{3}=E_{2}($ in region drawn $)$ is

$\mathbb{Z} / 2\left\langle\alpha^{3}\right\rangle$	0	0		0
0	0	0		0
$\mathbb{Z} / 4\left\langle\alpha^{2}\right\rangle$	0	0	$\left.\mathbb{Z} / 2\left\langle\alpha^{2}\right\rangle\right\rangle$	0
0	0	0	0	0
$\mathbb{Z} /\langle\alpha\rangle$	0	0	$\mathbb{Z} / 2\langle\alpha\rangle$	0
0	0	0	0	0
\mathbb{Z}	0	0	$\mathbb{Z} / 2\langle\beta\rangle$	0

$$
d_{3}: E_{3}^{0,4} \rightarrow E_{3}^{3,2} \text { and } d_{3} \alpha^{2}=2 \alpha \cdot \beta
$$

le. $d_{3}=0$ here
but last chance to kill $E^{3,2}$ is at E_{3} page (all ot hen maps to and from $E^{3,2}$ are 0)
So $d_{3}: E_{3}^{3,2} \rightarrow E_{3}^{6,0}$ must be nontrivial and if not an isomorphism then
$E_{3}^{6,0} / \operatorname{lin}_{3}$ lives to ∞ so is an isomorphism

$$
\therefore H^{6}(K(\mathbb{Z} / 2,2)) \cong E_{3}^{6,0} \cong \mathbb{Z} / 2
$$

generated by $d(\alpha \beta)=\beta^{2}$
so now at E_{3} we have

$\left.\mathbb{Z}_{2}\langle\alpha\rangle\right\rangle$	0	0		0		
0	0	0		0		
$\mathbb{Z}_{2}\left\langle\alpha^{2}\right\rangle$	0	0	$\mathbb{Z}_{2} /\langle\alpha \beta\rangle$	0		
0	0	0	0	0		
$\mathbb{Z}_{2}\langle\alpha\rangle$	0	0	$\mathbb{Z} / 2\langle\alpha\rangle$	0		
0	0	0	0	0	0	0
\mathbb{Z}	0	0	$\mathbb{Z} / 2\langle\beta\rangle$	0	$E_{3}^{5,0}$	$\mathbb{Z}_{2}\left\langle\beta^{2}\right\rangle$

slice $d_{3}: E_{3}^{0,4} \rightarrow E_{3}^{3,2}$ is zero last chance to kill $E^{0,4}$ is at E_{5} and as before $d_{5}: E_{5}^{0,4} \rightarrow E_{5}^{5,0}$ must be an isomorphous

$$
\begin{aligned}
\left(\text { note } E_{5}^{5,0}\right. & \left.=E_{2}^{5,0}\right) \\
\text { so } H^{5}(K(\mathbb{Z} / 2,2)) & =E_{5}^{5,0} \cong E_{5}^{0,4} \cong \mathbb{Z} / 2
\end{aligned}
$$

thus we have

q	0	1	2	3	4	5	6
$H^{2}(K(K / 2,2)$	$\#$	0	0	$z / 2$	0	$z / 2$	$z / 2$

and $H_{q}(K(\mathbb{Z} / 2,2))$ follows from Universal Coefficients T^{m}

Proof of lemma 16:
we have $K(\mathbb{Z} / 2,2) \simeq \Omega K(\mathbb{Z} / 2,3) \longrightarrow P K(\mathbb{Z} / 2,3) \simeq\{*\}$

so the E_{∞} of the cohomology Leray-Serre spectral sequence is

and $E_{2}^{s, t}=H^{s}\left(K(z / 2,3) ; H^{t}(\mathbb{z} / 2,2)\right)$
we know $H^{t}(\mathbb{Z} / 2,2)$ from lemma 17
$H_{S}(K(\mathbb{E} / 2,3)) \cong\left\{\begin{array}{cc}\mathbb{Z} & s=0 \\ 0 & s=12 \\ \mathbb{Z} / 2 & s=3\end{array}\right.$ from Herewicz
so $H^{s}(K(z / 2,3)) \cong \begin{cases}z & s=0 \\ 0 & s=1,2,3 \\ z / 2 \text { free } & s=4\end{cases}$
so we have

$$
\begin{array}{lllllll}
E_{2}^{s_{1} t} & \mathbb{Z} / 2 & 0 & 0 & 0 & \mathbb{Z} / 2 & 0 \\
& \mathbb{Z} / 2 & 0 & 0 & 0 & \mathbb{Z} / 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
& \mathbb{Z} / 2 & 0 & 0 & 0 & \mathbb{Z} / 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
& \mathbb{Z} & 0 & 0 & 0 & \mathbb{Z} / 2 & 0
\end{array} \mathrm{H}^{6}
$$

no free part or lives to do must be 0 or lives to so
for this part $E_{2}=E_{3}=E_{4}$
d_{4} must be an isomorphism or something lives to infinity E_{5} and E_{C} look like

$\# 00000 H^{6}$
d_{6} must be an isomorphism or something lives to ∞

So we see $H^{5}=0$ and $H^{6}=\mathbb{Z} / 2$ Univasal coefficients says
(1) $\mathbb{Z}_{2}=H^{6}\left(K(\mathbb{Z}(2,3)) \cong\right.$ free $H_{6}(K(\mathbb{Z} / 2,3)) \oplus$ for $\left(H_{5}\left(K\left(\frac{7}{2}, 3\right)\right)\right.$
(2) $0=H^{5}(K(\notin / 2,3)) \cong \operatorname{tree} H_{5}(K(z / 2,3)) \oplus \operatorname{tor}\left(H_{4}(\# / 2,3)\right)$
(3) $\mathbb{Z} / 2=H^{Y}(K(\mathbb{Z} / 2,3)) \cong$ free $H_{4}\left(K(\mathbb{Z} / 2,3) \oplus\right.$ tor $\left(H_{3}(\mathbb{Z} / 2,3)\right)$
$(2) \Rightarrow H_{5}(K(\mathbb{2}, 3))$ is forsion and (1) says if is $\mathbb{E} / 2$
$(3) \Rightarrow H_{\varphi}(K(z / 2,3))$ is torsion and (Z) suys if is O

